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Abstract

The rapid emergence of metabolomics has enabled system-wide measurements of metabolites in

various organisms. However, advances in the mechanistic understanding of metabolic networks

remain limited, as most metabolomics studies cannot routinely provide accurate metabolite

identification, absolute quantification and flux measurement. Stable isotope labeling offers

opportunities to overcome these limitations. Here we describe some current approaches to stable

isotope-labeled metabolomics and provide examples of the significant impact that these studies

have had on our understanding of cellular metabolism. Furthermore, we discuss recently

developed software solutions for the analysis of stable isotope-labeled metabolomics data and

propose the bioinformatics solutions that will pave the way for the broader application and optimal

interpretation of system-scale labeling studies in metabolomics.

Metabolomics is a rapidly growing field of postgenomic biology focusing on system-wide

studies of metabolite levels and transformations in biological samples. Recent advances in

modern high-throughput bioanalytical platforms, in combination with rapidly improving

computational capabilities for data analysis and interpretation, and the free availability of

numerous organism-specific metabolite databases, make it possible to annotate and quantify

hundreds of metabolites in a single experiment. The resulting metabolite profiles provide a
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highly informative snapshot of an organism’s physiology and are widely used both in

fundamental biology and in clinical research.

A major benefit of metabolomics is the unbiased approach and the resulting ability to

generate and test hypotheses based on the behavior of the whole biological system [1].

While it is not possible to detect every metabolite in a system, untargeted studies involve

large-scale detection of a wide range of structurally diverse metabolite features and offer

semiquantitative information about metabolite abundance. These untargeted studies can

generate hypotheses about novel or important metabolites and pathways, but generally

require follow-up targeted studies to confirm metabolite identities and accurately measure

metabolite concentrations [2].

A major limitation of many metabolomics studies is the lack of dynamic information to

allow interpretation of data in the context of metabolic fluxes [3, 4]. While metabolomics

may demonstrate an increased abundance of a certain metabolite under specific conditions, it

cannot determine whether this is the result of increased flux from a synthesizing enzyme,

decreased flux towards a consuming enzyme, or alteration in transport of the metabolite into

or out of the cell or between various compartments within the cell. Furthermore, many

metabolic pathways are interconnected, and metabolite levels are often maintained by a

number of metabolic processes, which cannot be adequately disentangled by measurement

of steady-state metabolite concentrations alone [3]. Metabolomics studies are primarily

performed with either NMR or MS-based analytical platforms. NMR is inherently

quantitative and nondestructive, offering the potential to obtain real-time metabolite

concentrations from live cells. However, MS-based approaches are more commonly used for

metabolomics due to its higher sensitivity and detection of a much larger range of

metabolites [5]. Isotope labeling offers advantages for both NMR and MS-based

metabolomics studies; however, in this review we will focus on LC–MS-based applications

of isotope labeling to metabolomics.

Isotope labeling has been used for many years to study metabolic fluxes and determine the

structure of metabolic pathways and networks. They were vital in the early days of

biochemical pathway analysis when biochemists first began to trace the conversion of one

chemical to another following incorporation of heavy atoms from precursor substrates into

different metabolic products. The establishment of MS-based analytical tools has enabled

the use of stable (non-radioactive) isotopes for this purpose, as the mass spectrometer can

reliably separate isotopically labeled compounds based on mass difference. Stable isotopes
have been used with MS for several decades by pharmacologists and toxicologists as

internal standard (IS) to enable absolute quantification of drugs and metabolites. Recent

advances in metabolomics with ultra-high-resolution MS have led to the establishment of

stable isotope tracer-based metabolomics approaches to quantification, identification and

pathway analyses [1]. The technologies are now available to allow global unbiased

assessments of metabolic flux in biological systems and enable the unambiguous tracing of

heavy elements through complex metabolic networks [3, 6]. In the context of systems

biology, this provides ample opportunities for reconstructing and validating both

stoichiometric and dynamic computational models of metabolism. Furthermore, metabolic

networks deduced by isotope-labeling techniques can be used as scaffolds for integrating

Chokkathukalam et al. Page 2

Bioanalysis. Author manuscript; available in PMC 2014 June 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



and interpreting multiple postgenomics datasets, such as transcriptomics and proteomics

profiles.

Today, use of isotopologous variants of common metabolites is facilitating advances in three

main areas of metabolomics research: metabolite identification; metabolite quantification;

and pathway discovery and flux analysis.

Stable isotopes in MS

Stable isotopes have the same number of protons as common elements, and consequently

share the same physicochemical properties, but they differ in mass due to a difference in the

number of neutrons. Among biochemically relevant elements, carbon, hydrogen, nitrogen,

oxygen and sulfur all have two or more stable isotopes with measurable abundance in

nature. The natural abundance of stable isotopes is often exploited in label-free

metabolomics studies to assist metabolite identification, in combination with accurate mass,

to determine the molecular formula [7]. For example, carbon is found predominantly as the

light isotope, 12C (98.89% abundance), but also in the form of a heavy stable isotope, 13C

(1.11%), with an additional neutron, in addition to trace amounts of a radioactive heavy

isotope, 14C. Isotopologs, that is metabolites containing stable isotopes and their unlabeled

counterparts, have the same chemical formula and structure and hence generally behave

identically during chromatographic separation (an exception being deuterated compounds

that can differ from their common hydrogen containing counterparts in chromatographic

properties [8]). However, in a mass spectrometer isotopologs can be readily differentiated by

mass (m/z). Therefore, the mass spectrum for an unlabeled metabolite contains the major

monoisotopic peak, in addition to low abundance peaks representing all combinations of the

naturally abundant isotopes. For example, a metabolite with four carbons (e.g., aspartate;

C4H7NO4) naturally possesses a 13C peak 1.00335 Da higher in mass, and at roughly 4%

abundance (4 × 1.11%), compared with the monoisotopic (12C) peak (Figure 1) . The exact

abundance of each isotopic peak can be calculated based on the binomial distribution, that is

the natural abundance of single-carbon-labeled aspartate is 4 × ([1.11%]1) ×

([100-1.11%]4-1) = 4.3%, and unlabeled U-12C-aspartate is (100-1.11%)4 = 95.7%.

Additional peaks representing the natural H, O and N isotopes, and peaks for molecules

containing more than one heavy atom, are also present at low abundance. Ultra-high

resolution Fourier transform MS is required to resolve all of these peaks, while unit

resolution mass spectrometers will produce a single peak for isotopologs with the same

nominal mass, necessitating additional mathematical deconvolution for accurate isotope

quantification. Stable isotope-labeling studies introduce heavy isotopes of common elements

(e.g., 13C, 15N, 2H, 18O and 34S), resulting in metabolites that produce co-eluting LC–MS

peaks of greater mass. For example, aspartate produced from a U-13C-labeled carbon source

would have a mass of 138.0582 in positive mode ESI-MS, 4.0134 Da (4 × 1.00335) higher

than the monoisotopic peak corresponding to the U-12C containing compound at 134.0448

Da. It is important to consider natural isotope abundances when quantifying metabolite

isotopologs from stable isotope-labeling experiments, particularly for low resolution MS,

large molecules or derivatized analytes (e.g., in GC–MS); however, the natural abundance is

insignificant for small molecules when more than two heavy atoms are incorporated and

analyzed on high resolution LC–MS.
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Experimental designs for stable isotope labeling

Stable isotope labeling can be applied to metabolomics and fluxomics studies of a variety of

biological systems, including microbial, animal, plant and human studies [9-12]. The

experimental design should be optimized depending on the sample characteristics and the

purpose of the study. In all cases, the most basic and important determinants are the

preparation of the samples and the choice of label for the system under investigation.

The selection of labeled nutrient is dependent on the study hypothesis and the known

metabolic pathways in the organism of interest [13]. For example, hypothesis-free

metabolomics studies that require extensive metabolite labeling utilize fully labeled carbon

sources, such as U-13C-glucose. Alternatively, for detailed analysis of central carbon

metabolism it may be more appropriate to use 13C-1,2-glucose to allow delineation of

metabolites arising from the glycolytic and pentose phosphate pathways. Other common

stable isotope tracers include: U-13C-glutamine to measure TCA cycle anaplerosis,

U-13C,15N-glutamine to detect pathways for carbon and nitrogen assimilation, or 13C-

bicarbonate to monitor CO2 incorporation from the atmosphere. The cost of labeled pre

cursors is an important consideration, particularly for studies of large organisms. A more

cost-effective labeling strategy for animal studies involves partial labeling of metabolites by

supplementing drinking water with D2O [10].

Another aspect specific to stable isotope-labeling studies is the integration of sufficient

quantities of heavy isotopologs into the metabolome to enable detection in MS analysis. The

kinetics of nutrient assimilation should be considered for studies that require steady-state

labeling. In particular, secondary metabolites and many macromolecules (including lipids)

may take several cell cycles to reach steady-state labeling, while labeling of central carbon

metabolites may occur within seconds. Accurate kinetic studies require an ‘instantaneous’

replacement of carbon source with the labeled nutrient, followed by rapid quenching and

extraction of metabolites at defined time points [14]. As the rapid change in carbon source is

technically challenging, especially for cells in suspension culture, an alternative approach is

to add additional labeled nutrient to the existing growth medium. An alternative is to grow

microbes on labeled substrates creating a saturated heavy isotope-labeled metabolome to

which cheaper, more readily available nonheavy isotopologs are added to follow their

distribution into the metabolome [15]. In each case the resulting metabolic perturbation is

likely to impact the rates of nutrient assimilation compared with cells at steady state [16]. A

chemostat methodology, whereby the unlabeled nutrient is replaced by the labeled nutrient

at a predefined rate, allows for rapid kinetic studies under controlled conditions. This

approach requires additional mathematical adjustment to interpret observed labeling kinetics

in the context of the rate of infusion [17]. Recent efforts to incorporate isotopically

nonstationary 13C metabolic flux analysis allow the study of incorporation of isotopes into

metabolites in a system at metabolic steady state but before isotope incorporation has

reached steady state – this allows enhanced probing of the distribution of fluxes through a

system [18].

Sample extraction procedures vary according to the sample type. The most important

considerations in all cases are the rapid quenching of metabolic enzymes, and the recovery
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and stability of metabolites during extraction and storage. Sources of contamination should

be minimized, as nonbiological peaks detected by MS can interfere with the detected

labeling patterns. Non-metabolism-related artefact signals can be detected if pure growth

medium is analyzed along with the labeled and unlabeled samples. This allows

discrimination of true biological mono-isotopic and isotopolog signals from metabolites and

chemical contaminants in the medium. Using different ratios of carbon isotopes in control

and experimental samples can also be used to differentiate artefacts (unlabeled) and true

metabolites (labeled) [19]. Solvent blanks, authentic standards for identification or

quantification, and pooled quality controls to monitor signal reproducibility are also

recommended [20].

Representative applications for stable isotopes in metabolomics

Metabolite identification

Detection and reliable identification of structurally diverse chemicals without a priori

knowledge is the fundamental requirement of untargeted metabolomics analysis. The

numerous challenges and limiting factors in this task are well documented [2,21,22], the

most notable being the inability to accurately assign metabolite identity to most peaks within

the dataset. Stable isotope labeling has several advantages with respect to metabolite

structural elucidation. Determination of the elemental composition is a major strategy for the

putative identification of metabolites in MS-based metabolomics. However, even with high

mass accuracy, a detected mass-to-charge (m/z) signal can arise from one of several different

molecular formulae within the accuracy limit of the mass spectrometer. Using heavy atom

labeling allows elemental composition to be determined [23]. For example, feeding the

organism of interest uniformly 13C-labeled nutrients can be used to determine the number of

carbon atoms by measurement of the mass shift between labeled and unlabeled metabolites

[24]. Similarly sources of nitrogen or sulfur carrying heavy isotopes of these atoms can be

added to confirm the presence of these atoms in a target formula [25,26].

In addition to the determination of the molecular formula, isotope labeling can assist with

the structural identification of metabolites. In many cases a molecular formula is not

sufficient to accurately identify metabolites, as multiple isomers exist in biology for most

known metabolites. Labeling with predicted metabolic precursors [11,27] or partial labeling

with generic carbon sources [6,28], often aids the identification of metabolites based on

prior knowledge of biochemical pathways. Alternatively, labeling can assist the

interpretation of MS fragmentation spectra from electron ionization MS, MS/MS or

MSn[15,25].

The extensive application of untargeted metabolomics in the last decade has revealed many

unidentified metabolites in biological systems, and it is expected that stable isotope labeling

will play an important role in identifying many of these novel metabolites in the coming

years. Some recent examples of this approach include the discovery of a new fumigaclavine

secondary metabolite in Aspergillus fumigatus [29], and eight novel deoxynivalenol

derivatives in wheat [11].

Chokkathukalam et al. Page 5

Bioanalysis. Author manuscript; available in PMC 2014 June 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Absolute metabolite quantification

LC–MS-based metabolomics studies offer the broadest scope of detection for small-

molecule metabolites in biological systems. However, although the MS-based relative

quantification of metabolites gives us useful information, absolute quantification in MS-

based metabolomics is often impacted by ion suppression or enhancement from co-eluting

compounds in the sample matrix [30]. This ion suppression leads to a high dependency of

metabolite response on the sample matrix, and impacts the relationship between the LC–MS

response (peak area) and true intracellular metabolite concentrations, resulting in a nonlinear

and matrix-dependent calibration curve [31].

A full understanding of cellular responses and metabolic flux requires both qualitative and

quantitative information, including absolute metabolite concentrations across the metabolic

network, which impacts metabolic reaction rates. In order to overcome the matrix-dependent

response of MS, heavy atom-labeled isotopologs of metabolites can be used as IS. Absolute

quantification using stable isotope labeling, however, is limited by the availability and cost

of 13C-labeled authentic standards. To overcome this limitation, fully labeled metabolite

extracts from a cellular system can be generated as an alternative to spiking individual

authentic standards. In this experimental design, a large batch of cells is grown in the

presence of a fully labeled stable isotope carbon source. Ideally these cells should come

from the same species or tissue as the samples of interest to ensure all relevant metabolites

are present; however, providing a fully labeled carbon source is typically only possible in

cells adapted to a simple fully defined medium such as Escherichia coli or Saccharomyces

cerevisiae. In this way, many hundreds of metabolites can be fully labeled (a caveat being

where atmospheric carbon dioxide provides unlabeled atoms to the system) providing an

ideal source of labeled IS. For more complex organisms it may be necessary to use a

heterologous source of isotope-labeled extract, such as the commercially available uniformly

labeled algal extract [32]. A fixed amount of the labeled extract is then spiked into the study

samples, which allows absolute quantification of the metabolites of interest by reference to a

calibration curve of unlabeled authentic standards containing the labeled IS extract (Figure

2) [33-37].

An alternative method for absolute quantification of intracellular metabolites without

constructing an external calibration curve has been developed. In this method, a model

organism was grown in U-13C-labeled carbon source medium and extracted in organic

solvent spiked with known concentrations of unlabeled IS. Absolute concentrations were

calculated based on the ratio of labeled intracellular metabolites to unlabeled IS and were

corrected with reference to the intracellular volume of the extracted cells [38]. The benefit of

this isotope-dilution approach to quantification was demonstrated by measurement of the

absolute concentrations of more than 100 metabolites in E. coli. These data revealed high

concentrations of many metabolites, significantly above the concentration required for half

maximum reaction rate (Km) value of their consuming enzymes. Notably, a number of lower

glycolytic metabolites were present at concentrations close to their respective Km, indicating

substrate-dependent modulation of flux is important for these reversible central pathways

[33].
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Absolute metabolite quantification is not essential in many metabolomics studies involving

comparison of two or more experimental conditions. Nevertheless, complete stable isotope

labeling allows accurate comparative quantification without the limitations associated with

matrix effects. Analogous to the SILAC approach in proteomics, the unlabeled and labeled

samples can be mixed and analyzed simultaneously, avoiding the potential for differential

ion suppression [19,25,39].

An alternative approach to absolute quantification for LC–MS metabolomics is post-

extraction derivatization with differentially labeled derivatizing agents (analogous to ICAT

methods in proteomics). This offers the advantage of generating isotopic IS for all

metabolites of interest and is not confined to organisms that can be grown in fully defined

media in cell culture. The limitations of this approach are the increased requirements for

sample preparation, the limited suitability of derivatization reagents for a diverse range of

metabolites, and the introduction of chemical complexity that precludes high-throughput

metabolite identification based on accurate mass. Nevertheless, several isotopically labeled

derivatization reagents have been demonstrated for applications in metabolomics including:

DiART [40] and methylation [8] for amines, dansylation for amines and phenols [41], and p-

dimethylaminophenacylation for organic acids [42].

Pathway discovery & metabolic flux analysis

Role of metabolites in regulation of metabolic flux

The application of stable isotope labeling provides important information about metabolic

flux that could not be demonstrated by classical label-free metabolomics studies. A number

of important recent discoveries have demonstrated the power of stable isotope labeled

metabolomics to advance our understanding of cellular metabolism.

The well-defined pathways of central carbon metabolism, including glycolysis, pentose

phosphate pathway, TCA cycle and related pathways, are most commonly studied by

isotope-labeling approaches. The measurement of central carbon flux during metabolic

perturbation by genetic (e.g., gene knockout) or exogenous (e.g., drug treatment) factors

provides novel information about the regulation of pathways and their roles in growth and

disease. Understanding how individual metabolites regulate fluxes through the network is

central to our appreciation of regulated systems.

For example, in a recent study, the central carbon metabolism of colon cancer cells was

determined with U-13C-glucose labeling to investigate glycolysis in cells expressing the

PKM2 isoform of pyruvate kinase [43]. Stable isotope incorporation into

phosphoenolpyruvate and pyruvate enabled measurement of pyruvate kinase activity levels,

and it was possible to demonstrate allosteric activation of PKM2 by serine. Relative levels

of isotope incorporation into related amino acids and TCA cycle intermediates demonstrated

that PKM2 has a key regulatory role as ascertained by genetic silencing (shRNA

knockdown) and adding serine to stimulate allosteric modulation [43]. An example of in

vivo labeling of human lung cancers with U-13C-glucose revealed isotopic enrichment in a

number of central carbon metabolites compared with noncancerous tissue [12], with

enhanced production of glucose-derived 13C-1,2,3-aspartate and 13C-2,3-glutamate
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demonstrating increased activity of pyruvate carboxylase in tumor tissue. Upregulation of

pyruvate carboxylase was subsequently confirmed at the mRNA and protein level, offering a

potential target against which to intervene in cancer chemotherapy. Similar non-targeted

approaches tracing the appearance of heavy atoms in metabolites derived from labeled

precursors have also been described for GC–MS studies in a lung carcinoma cell lines [44].

The regulation of metabolism is a central part of systems biology and labeling of E. coli with

U-13C-glucose and related carbon sources has recently enabled significant advances in our

understanding of metabolic flux regulation at the transcriptional [45], post-transcriptional

[46] and allosteric levels [47]. A novel regulatory mechanism and overflow metabolism

were identified in E. coli pyrimidine metabolism by 15N-orotate labeling [9]. The

incorporation of labeled nitrogen into pyrimidine nucleotides enabled measurement of de

novo pyrimidine synthesis and revealed a new regulatory mechanism for pyrimidine

homeostasis. 15N-orotate labeling, in combination with genetic mutants, confirmed the

previously known feedback inhibition of carbamoyl phosphate synthetase by UMP, and of

aspartate transcarbamoylase by UTP and CTP. In addition, a novel product inhibition

mechanism acting on UMP kinase was shown to maintain UTP and CTP homeostasis with

excess UMP eliminated by a previously unidentified uridine phosphatase activity [9].

Novel pathway discovery

The ability to discover new metabolic pathways by following the distribution of heavy

atoms from isotopologs through the metabolic network has already been exploited during

the classical period of biochemical pathway identification (although those studies were

mostly based on radioactive isotopes, which enabled easier detection before the

development of highly sensitive MS instrumentation suitable for metabolomics). Untargeted

metabolomics studies routinely detect putative metabolite signals that were not anticipated

according to the pre-existing models of metabolic networks in specific organisms. Stable

isotope labeling enables confirmation of the biosynthetic nature of novel metabolites

[24-26], and can also delineate the active metabolic pathways responsible for the production

of novel or known metabolites.

Recent examples of pathway identification include a stable isotope-labeled metabolomics

study of a mixed community of extremophilic microorganisms, where 15N-ammonium

sulfate was used to identify endogenous production of unexpected metabolites in an acidic,

metal-rich environment [48]. Seeking interdependencies between members of environmental

communities is of particular interest, moving beyond single organism systems. Taurine and

hydroxyectoine production was identified, and is thought to be involved in protection from

osmotic stress. Proteomic and genomic evidence then allowed identification of the

microorganisms most likely to be responsible for the synthesis of these metabolites. While

Leptospirillum group II bacteria are capable of producing hydroxyectoine, the complete

enzymatic pathway for taurine production was not identified in any of the bacterial species

inferred to be present in the biofilm. The genome of the dominant fungal species present in

the biofilm, Acidomyces richmondensis, however, contains enzymes responsible for partial

synthesis of taurine, and it is proposed that the remaining oxidative steps are catalyzed

nonenzymatically in this iron-rich environment, although it would be of interest to determine
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the degree to which metabolite precursor sharing occurs within communities of this type

[48].

In another study of unique microbial metabolism, 1-13C-acetate labeling of the methylotroph

Methylobacterium extorquens AM1 demonstrated activity of the ethylmalonyl–CoA

pathway for production of glyoxylate [28]. Bacteria that lack isocitrate lyase require an

alternative pathway to regenerate glyoxylate from acetyl-CoA. Two alternative pathways

were previously proposed to account for this activity, the glyoxylate regeneration cycle, and

the ethylmalonyl–CoA pathway. Detection of 13C-labeling in intermediates of the

ethylmalonyl–CoA pathway, and the isotopomer profile of propionyl–CoA, were consistent

with activity of the ethylmalonyl–CoA pathway rather than the glyoxylate regeneration

cycle and further analysis of the positional isotopomers of glycine following 13C-methanol

labeling, confirmed the metabolic network model containing the ethylmalonyl–CoA

pathway [28].

In parasites too, metabolic profiling has revealed hitherto unknown pathways. In the

apicomplexan parasite Toxoplasma gondii significant accumulation of the unexpected

metabolite, GABA was found. The enzymes responsible for the GABA shunt were

subsequently identified bioinformatically and confirmed by genetic knockout in combination

with U-13C-glutamine labeling [27].

Even in well studied organisms like S. cerevisiae, new pathways continue to emerge.

Metabolomics analysis of a yeast knockout mutant (ΔYKR043c) revealed altered levels of

novel seven- and eight-carbon mono- and diphosphorylated sugars. Subsequent labeling

with U-13C-glucose confirmed the identity of these metabolites and, in combination with

biochemical and genetic studies, identified the gene as sedoheptulose-1,7-bisphosphatase

and described a novel riboneogenesis pathway [49].

Potential for network-wide pathway elucidation

The power of stable isotope-labeled metabolite profiling to determine the architecture of

metabolic pathways has been clearly demonstrated, providing direct information about novel

metabolic routes [9,27,28,49]. However, to date, these studies have been limited to the

targeted profiling of known or anticipated metabolic pathways, commonly focusing on the

extensively studied area of central carbon metabolism. Several tools have also been

developed for network-wide pathway elucidation by the combination of untargeted (or

semitargeted) metabolomics with stable isotope labeling [6]. This approach provides the

potential to discover novel metabolic pathways, and reveals important information about

active pathways for organisms that have multiple possible carbon sources. This approach

was previously limited by the difficulties associated with simultaneous identification of

hundreds of metabolites, and the detection and quantification of all relevant isotopolog

signals. Recent developments in metabolomics technology include methods for widely-

targeted metabolomics studies, which accurately identify and quantify hundreds of known

metabolites [50], and advances in putative metabolite identification from high-resolution

LC–MS-based untargeted studies, based on accurate mass-derived formula determination

and predictive tools for retention time [51] or MS/MS spectra [52]. Furthermore, software

solutions to routinely extract isotopolog abundances on a large scale are now available (see
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below). Biochemical interpretation of these data still requires a significant level of manual

curation, but the growing availability of atom-resolved metabolic networks, where the

source of specific atoms in each molecule can be traced from precursor substrates, offers the

potential for computational approaches to biological inference and hypothesis generation

based on network-wide isotope-labeled metabolomics data.

Extensive information about pathway flux can be gained by collection of time-course data,

to trace incorporation of metabolites, or by utilization of partially labeled, or mixed labeled/

unlabeled isotopic precursors. In a proof-of-concept study, the addition of 50% U-13C-

glucose to the procyclic form of the protozoan parasite, Trypanosoma brucei, revealed

labeling patterns that allowed assignment of the biosynthetic routes for many metabolites.

This included confirmation of succinate production via the glycosomal fermentation

pathway, rather than the TCA cycle, and incorporation of pentose phosphate cycle

intermediates into the novel metabolite octulose phosphate [6].

An alternative system-wide application of isotope labeling is the SiDMAP approach to

isotope enriched metabolome (‘isotopolome’)-wide association studies, which aim to detect

relationships between known phenotypes and isotope labeling of metabolites [53]. In this

approach, the isotope profile of a number of defined metabolic end-products is measured to

indicate the flux through known pathways [54]. While this approach does not capture the

extent of cellular metabolism, and cannot identify unanticipated metabolites or pathways, it

provides a rapid and accessible means to measure flux through a number of central pathways

in response to genetic, environmental or pharmacological perturbation [53].

Challenges of stable isotope-labeled metabolomics data analysis

A plethora of computational tools are available to analyze the datasets created by MS-based

metabolomics studies [2], including widely used open source software for LC–MS, such as

MZmine [101], mzMatch [102], Ideom [103] and XCMS [104], and commercial software,

such as SIEVE [105], MassHunter [106], Progenesis CoMet [107] and MarkerLynx [108].

These programs are designed for identifying and quantifying metabolites of interest in data

gathered from nonisotopically labeled data (some can be used to manually extract isotope-

labeling information); however, they lack features that are critical for a successful global

analysis of data from stable isotope-labeled metabolomics studies.

The specific analytical approach to each stable isotope-labeled metabolomics study is

dependent on the aim of the study. For example, LC–MS data for metabolite identification

from an untargeted study would be analyzed differently to flux data from a targeted study of

central carbon metabolism. Nevertheless, all stable isotopelabeled metabolomics studies

share the common requirement to extract accurate isotopolog intensities from the raw data

and present this data in a format suitable for biological interpretation. The following features

would be desirable in a comprehensive computational solution for the systematic analysis of

data derived from heavy isotope labeling experiments:

• Visualization options for unlabeled and labeled chromatograms for rapid visual

comparison and assessment of peak shape and relative intensity across samples.

The generation of supporting information, such as diagnostic plots of the observed
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labeling patterns, needs to be efficient enough for a quick exploration of the large

amount of compounds detected in untargeted isotope profiling;

• Consideration of all of the biologically relevant stable isotopes (13C, 2H, 15N, 18O

and 34S) and different numbers of heavy atoms (e.g., the analytical considerations

associated with U-13C-glucose labeling differ considerably from 13C-bicarbonate).

Furthermore, the software must be able to handle all permutations of label

incorporation in nutrients labeled with multiple isotopes (e.g., glutamine labeled

with 13C and 15N);

• Output that facilitates downstream statistical and modeling analyses and can be

easily integrated with existing software.

Currently available tools that are specifically designed to analyze labeled MS data (Table 1)

include CAMERA [55], MetExtract [56], MAVEN [57] and mzMatch-ISO [58]. CAM-ERA

is an R tool that is specifically designed for the annotation and evaluation of mass spectral

features including isotope peaks, adducts and fragments that co-elute from a

chromatographic column. Although the software provides some basic visualization of the

light and heavy isotopolog chromatograms, rapid differentiation and relative quantification

of isotope patterns is not currently possible with this software. Similar limitations with

visualization apply to MetExtract, which has a comprehensive user interface that enables

custom parameters to be defined. MetExtract employs a brute force method to extract peaks

from mass spectra rather than exploiting other well-established peak-picking algorithms.

MAVEN has a highly intuitive interface for exploring and validating metabolomics data

rapidly and reliably. It has robust and easily comprehensible plots to differentiate the

labeling patterns between replicates and sample groups within an experiment. The pathway

visualizer, and isotopic flux animator in this software offer automated inference into

biological events detected within a study, making it an excellent tool for the analysis of

isotope labeling studies in systems biology. Unfortunately, custom algorithm development

and data integration that would allow the software’s extension require expertise in system

level programming language, C++. mzMatch-ISO is an open-source software that combines

all of the desired features listed previously and has been employed recently in a number of

targeted and untargeted labeling experiments [6,43]. It is derived from the mzMatch.R suite

of metabolomics analysis tools [59], providing access to automated data analysis through a

well-defined pipeline [60]. It uses the XCMS centWave [61] peak-picking algorithm

augmented by an algorithm that fills missing signals from raw mzXML [62] data to provide

precise quantification of all isotopologs. Further-more, the processing pipeline includes

several filters that remove noise and signals of low intensity. These filters not only provide

cleaner data in untargeted isotope profiling, but also reduce the time and effort required for

downstream statistical analysis and interpretation.

Another important challenge is the rapid visualization of information from isotope labeled

metabolomics data within the context of metabolic pathways and networks. Automatic

mapping of labeled metabolites onto metabolic networks would provide an immediate view

of the core flux map of an organism, and also provide an indication of the effect of

perturbations on various aspects of metabolism [6]. Several tools provide facilities to assist

this kind of visualization, including MetPA [63], MetExplore [64], iPath2 [65] and Pathos
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[66]. All of these are web applications that can either infer metabolic networks (MetExplore)

or map metabolites identified in a metabolomics study onto metabolic maps from KEGG

[67] or MetaCyc [68]. However, none of these is specifically designed to make full use of

the rich data provided by isotope-labeling studies, and several important challenges remain

in this area. First and foremost, an important objective of many untargeted stable isotope-

labeled metabolomics experiments is to facilitate tracing the route of individual atoms from

a labeled nutrient source. Therefore, a specifically designed visualization tool for this type of

data analysis should encapsulate and display such information. Although computationally

trivial to implement, the major limiting factor for such a pathway visualization platform

would be the underlying database. Instead of databases that map metabolite and reaction

names, in silico atom-resolved databases of metabolic networks are required for this

purpose. Some such databases for E. coli and a few other organisms exist in BioCyc and

KEGG [69,70]; however, a software that uses these databases is not yet available.

An important feature of metabolomics data is that it can provide a snapshot of the most

active pathways within an organism, which makes it an ideal source of data for the

reconstruction of metabolic models and for validating the features of genome scale

metabolic models. To do this, however, data from metabolomics experiments need to be

exported in a form acceptable to popular metabolic modeling softwares such as the Cobra

Tool Box [71], ScrumPy [72] and Copasi [73]. These pieces of software enable the

application of various constraint-based pathway analysis and interrogation algorithms, such

as enzyme subset analysis, elementary modes analysis [74,75] and flux balance analysis

[76], to generate and test hypotheses regarding the biology of an organism. One challenge in

achieving such comprehensive metabolic models is the presence of reactions in a network or

pathway that could not be identified from the metabolomics data. Such gaps in reconstructed

metabolic networks need to be filled using data from complete and accurate metabolic

models from model repositories, such as the BioModels database [77], that host numerous

curated and published databases.

Conclusion & future perspective

The integration of stable isotope labeling with metabolomics studies has been demonstrated

in a number of biological systems and provides solutions to the major limitations of

metabolomics: metabolite identification, quantification and flux analysis. Stable isotope

labeling is expected to become a routine aspect of many metabolomics studies in the future,

as the metabolomics field moves from a largely observational approach to a more detailed

mechanistic investigation of cellular metabolism. Pioneering studies of stable isotope-

labeled metabolomics have already discovered numerous novel metabolites, pathways and

regulatory mechanisms [9,28,29,33,43]. The available tools for stable isotope-labeled

metabolomics allow investigation of metabolic responses to various stimuli including

pharmacological, environmental and genetic perturbations, which will inevitably lead to

advances in our understanding of metabolic networks.

The incorporation of data from stable isotope-labeled metabolomics studies into

computational flux models provides an exciting avenue to interpret metabolomics data. It is

expected that gaps in our current knowledge of pathway connectivity will be closed as the
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cycle of metabolic labeling and flux modeling informs the discovery of new metabolites,

pathways and fluxes. Recent software advances allow the rapid extraction and quantification

of isotopolog signals from MS-derived metabolomics data. The next essential step to enable

the widespread application of labeling to network-wide isotopolog analysis is the

development of user-friendly software to integrate experimental isotopolog data into

genome-scale models of metabolism for visualization and predictive modeling.
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Key Terms

Metabolomics Comprehensive measurement of metabolite abundances in a

biological system.

Metabolic
pathways

Series of biochemical reactions converting substrates (e.g., nutrients)

into metabolic end-products. Definitions of the start and end points

of metabolic pathways are often arbitrary, as most metabolic

pathways are interconnected.

Stable isotopes Any form of a chemical element that does not undergo radioactive

decay, generally used to refer to heavy isotopes of common elements

that have low abundance in nature (e.g., 13C, 15N, 2H, 18O and 34S).

Metabolic flux Rate of turnover of metabolites in a metabolic pathway.

Isotopologs Two or more isotopic homologs of a molecule that differ only in

their isotope composition and mass.
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Websites

101. MZmine2 software. http://mzmine.sourceforge.net

102. mzMatch/PeakML: metabolomics data analysis. http://mzmatch.sourceforge.net

103. IDEOM software. http://mzmatch.sourceforge.net/ideom.php

104. Scripps Center for Metabolomics. Metlin database and XCMS software. http://metlin.scripps.edu

105. Thermo Scientific. SIEVETM software for differential expression. www.thermoscientific.com/en/
product/sieve-software-differential-expression.html

106. Agilent Technologies. Masshunter workstation. www.chem.agilent.com/en-US/products-services/
Software-Informatics/MassHunter-Workstation-Software/Pages/default.aspx

107. Nonlinear Dynamics. Progenesis CoMet. www.nonlinear.com/products/progenesis/comet/
overview

108. Waters. Markerlynx. www.waters.com/waters/en_US/MarkerLynx-/nav.htm?
cid=513801&locale=en_US

109. MAVEN: Metabolomics analysis and Visualization Engine. http://maven.princeton.edu

110. Metextract software. http://code.google.com/p/metextract/

111. CAMERA R package. www.bioconductor.org/packages/release/bioc/html/CAMERA.html

112. iMS2Flux software. http://sourceforge.net/projects/ims2flux/

113. Fiatflux software. www.imsb.ethz.ch/researchgroup/nzamboni/research/Software/fiatflux

114. 13CFlux.net portal. www.13cflux.net

115. OpenFLUX software. http://openflux.sourceforge.net
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Executive summary

Metabolite identification

• Stable isotope labeling aids in formula determination for identification of

metabolites.

Absolute metabolite quantification

• Complete stable isotope labeling of an organism can provide metabolome-wide

IS for absolute quantification.

Pathway discovery & metabolic flux analysis

• Stable isotope labeling enables flux measurements that allow the study of

system-wide metabolic regulation.

• Novel metabolites and pathways can be discovered by application of stable

isotope-labeled tracers.

Challenges of stable isotope-labeled metabolomics data analysis

• Recent software developments have begun to overcome the bottleneck in data

analysis for stable isotope-labeled metabolomics.

• Further software solutions will be required to routinely interpret metabolome-

wide stable isotope-labeling studies in a biological context.
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Figure 1. Isotopolog LC-MS signals for differentially labeled aspartate
Relative abundance of different isotopologs of aspartate in procyclic form Trypanosoma

brucei growing on (A) unlabeled 12C-glucose medium and (B) a 50:50 mix of labeled

U-13C-glucose and unlabeled U-12C-glucose medium at steady state [6]. Isotopologs elute at

the same retention time, but their masses differ by the difference in the mass of heavy and

light carbon (1.00335 Da). Red circles show the number of labeled carbons that each isotope

contains. Chromatograms show unlabeled (black), one (red; natural isotope abundance), two

(green), three (blue) and four (purple) carbon-labeled isotopologs. These aspartate

isotopologs are synthesized from the respective oxaloacetate (OXAC) isotopologs by

transamination, and demonstrate active glycolysis and succinate fermentation pathways: the

predominant three carbon labeled OXAC derives from phosphoenolpyruvate carboxykinase

(PEPCK) activity on three-labeled (glycolysis-derived) phosphoenolpyruvate and unlabeled

(atmospheric) CO2. The two carbon-labeled isotopolog commonly indicates formation of

two-labeled OXAC from the TCA cycle; however, TCA cycle activity is minimal in T.

brucei, and in this case, two-labeled OXAC is derived from a reversible succinate

fermentation pathway where the symmetrical structure of fumarate allows labeled

carboxylic acid groups of dicarboxylic acid intermediates to be replaced by unlabeled

(atmospheric) CO2 through the reversible activity of PEPCK [78]. The low-abundance four

carbon-labeled isotopolog derives from addition of labeled CO2 to three-labeled

phosphoenolpyruvate by PEPCK. The labeled CO2 is generated biosynthetically from

glucose by either the pentose phosphate pathway or by PEPCK in the reversible succinate

pathway. Please see colour figure at: www.future-science.com/doi/full/10.4155/BIO.13.348
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Figure 2. Methodology for absolute quantification using stable isotope labeling
Fully labeled metabolite extracts from a cellular system are used as an alternative to spiking

expensive labeled standards for each individual metabolite [36]. See text for detailed

explanation.
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Table 1
software for stable isotope-lab metabolomics data analysis

Software Advantages Disadvantages Ref.

mzMatch-ISO • Uses the standard XCMS peak-picking algorithm
to pick peaks and can retrieve missing peaks
from raw data

• Written in the R statistical software. A single
command with well-documented parameters is
all that is required to run an analysis

• Results include chromatograms and several plots
that describe the labeling pattern within
replicates and within an experiment

• Can work on most biologically relevant isotopes
– C, H, N, O and S

• Can be used for both targeted and untargeted
isotope profiling

• Has a command line interface

• Has a steep learning curve

[58,102]

MAVEN • Robust and easily comprehensible plots to
differentiate the labeling patterns between
replicates and sample groups within an
experiment

• The pathway visualizer and isotopic flux
animator in this software offer automated
inference into biological events detected within a
study

• A very robust user interface that is easy to
understand and operate

• Can be used as tool to quickly inspect the
labeling pattern of a given metabolite

• Development of custom algorithms
and data integration that would
extend the capabilities of the
software is challenging for a typical
biologist

[57,109]

MetExtract • Offers a very basic visualization of the
monoisotopic and corresponding isotope peaks

• Has a comprehensive user interface that enables
custom parameters to be defined

• MetExtract employs a brute force
method to extract peaks from mass
spectra rather than exploiting other
well-established peak-picking
algorithms

• The basic visualization of peaks
offered is not sufficient in many
applications

[56,110]

CAMERA • Specifically designed for the annotation and
evaluation of mass spectral features including
isotope peaks, adducts and fragments that co-
elute from a chromatographic column.

• Written in the R statistical software and is open
source. This offers plenty of scope for further
extension

• The software provides only a basic
visualization of the light and heavy
isotopolog chromatograms

• Rapid differentiation and relative
quantification of isotope patterns is
not currently possible with this
software

[55,111]

IDEOM • User-friendly and familiar interface in the form
of Microsoft® Excel spreadsheets

• Very easy to implement once the underlying
software is installed

• Results in the form of tables that can be easily
exported for further statistical analyses

• Designed for the annotation and
evaluation of mass spectral features
including isotope peaks, adducts and
fragments that co-elute from a
chromatographic column

• Cannot directly access raw data to
retrieve missing peaks (requires
mzMatch-ISO for this function)

[79,103]

iMS2Flux • Provides a framework for automated isotopolog
analysis for large datasets

• Additional software is required for
the initial peak detection and for the
final flux analysis

[80,112]
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Software Advantages Disadvantages Ref.

• Focus on validation and correction of MS-
derived data and output in format suitable for
MFA

• Cannot directly access raw data
when performing data checks

FiatFlux
† • 13C-MFA tool that has a convenient user

interface

• Facilitate FBA

• GC–MS based tool

• Works only on 13C-labeled data

• Does not work on LC–MS data

• Requires predefined steady-state
stoichiometric model to predict flux

• Cannot perform untargeted
metabolomics and trace the route of
labeled carbon atoms

[81,113]

13C-Flux2
† • Aimed at providing a direct measure of flux in a

system being investigated

• Provide insights into metabolic pathway activity
by comparing flux phenotypes under different
environmental conditions and physiological
states as well as for a variety of carbon sources

• Has been used in numerous 13C-MFA studies

• Works on GC–MS, LC–MS and NMR data

• Requires a detailed steady-state
stoichiometric model that
encompasses the metabolism being
studied

• Command-line interface

• Works only on 13C labeled studies

• Cannot perform untargeted
metabolomics on labeled data

[82,114]

OpenFlux • An attempt to make a flexible version of 13C-
Flux2 to perform steady-state 13C MFA using
mass isotopomer distribution data

• Spreadsheet-based user interface

• Not applicable for targeted and/or
untargeted metabolomics data
analysis and isotope profiling

[83,115]

†
These are metabolic-flux analysis tools that require a predefined stable steady-state stoichiometric model of the metabolism to determine the flux.

MFA: Metabolic flux analysis; FBA: Flux balance analysis.
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