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Abstract

“Implementing differential mobility spectrometry in an LC–MS bioanalytical assay can simplify 

sample preparation methods and enhance selectivity at the same time.”
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Recently, differential mobility spectrometry (DMS) has proven to be a valuable addition to 

mobility spectrometry (MS) analyses. It provides separations that are orthogonal to both the 

MS and the LC that accompany most bioanalytical workflows. In addition, using DMS can 

solve problems upstream of LC–MS analyses, allowing for streamlining of sample 

preparation by virtue of DMS's unique gas-phase separations. Generally, sample preparation, 

derivatization and cleanup can cost the most time and money in bioanalytical workflows. 

For example, many small, polar analytes are not easily separated from isobaric chemical 

noise (same molecular weight) during sample preparation or LC. For larger analytes, like 

peptides and proteins, endogenous species (other peptides, proteins) are sampled during 

`cleanup' and LC elution. This editorial focuses on the use of planar DMS for improving 

such bioanalytical workflows; microscale DMS and cylindrical DMS (or FAIMS) are not 

included for brevity. Here, we detail the benefits of using DMS, which provides rapid 
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separations for analytes that can be difficult or impossible to separate by LC and where 

isobaric or isomeric chemical noise overwhelms analytical signal.

A brief description of DMS

DMS separates ions in the gas phase based upon subtle differences in their chemical 

structures [1–4]. This separation occurs at atmospheric pressure, between the ESI source and 

the MS sampling orifice, [5] allowing for three consecutive and orthogonal separations in an 

LC–DMS/MS workflow. After the ESI source, ions are swept by carrier gas (N2) through 

the DMS cell – two planar electrodes between which a high-voltage radio frequency 

asymmetric waveform is applied (separation voltage – SV) [1–5]. The SV causes ions to 

oscillate toward one electrode or the other depending upon the difference in the ion's 

mobility during the high- and low-field portions of the waveform. To insure that an ion is 

detected by the MS, a direct current voltage (compensation voltage – CoV) deflects ions 

away from collisions with the electrodes and toward the MS.

Another critical factor is the gas-phase environment of the DMS cell, which can be changed 

by adding volatile chemical modifiers (≥1.5% v/v), such as isopropanol, to the carrier gas 

[6,7]. Clustering interactions between the modifier molecules and analyte ions [6–8] can 

cause large shifts in their CoV values; oftentimes, the analyte's CoV is shifted from the 

CoVs of isomeric or isobaric impurities. Also, the addition of chemical modifiers spreads 

the analytical signals across a wider range of CoV values (compared with pure N2) while 

maintaining the peak widths of the analytes, thereby increasing the overall peak capacity of 

the DMS experiments [9]. The choice of chemical modifier and the degree of separation 

depends upon the ion's structure, the gas-phase properties of the modifier and the binding 

energies between the ion and modifier [8]. In fact, even the site of protonation of some 

molecules can be determined using DMS [10,11].

When does it make sense to use DMS?

Generally, DMS finds its greatest utility in the most challenging analytical workflows 

where: high levels of debilitating isobaric chemical noise reduce analyte detection limits, 

isomeric interferences are present, or exhaustive sample preparation, derivatization and/or 

chromatography are required to combat the preceding issues. DMS's capability to solve 

these challenges has been recently demonstrated by several groups.

Using differential mobility spectrometry in more advanced bioanalytical workflows 

(e.g., fluxomics) will enable biologists to answer more complex questions about 

cellular processes.

Using DMS can sometimes present opportunities to circumvent the use of LC while still 

providing reduced isobaric and isomeric chemical noise levels. For the analysis of isomeric 

glucuronides of propranolol from mouse liver, Parson and coworkers [12] employed a DMS-

multiple-reaction-monitoring workflow that separated these isomers using DMS with 

acetonitrile as a chemical modifier. While a similar LC-based separation required 

approximately 5 min of run time, the DMS required approximately 19 s – a time saving of 

approximately 15×. In addition to similar time savings, Porta and coworkers [13] described a 
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more convenient experimental setup with their integration of a surface sampling technique 

(LESA – liquid extraction surface analysis) with DMS instead of LC. Since LESA can use 

high levels of organic solvent for its extraction step, injection of such a solution directly on 

to a LC column could yield variable retention times; the DMS does not suffer the same 

effect. With DMS, they mapped the distributions of 30 drugs of abuse (including isomeric 

cocaine metabolites) from human kidney and muscle tissue cross sections. Again, LESA 

with DMS required 1.5 min total analysis times (3–6× time savings over LC–MS). 

Dharmasiri and colleagues [14] also avoided using LC to separate cancer antigen peptides 

from a test matrix of 94 similar peptides; without DMS, the antigen could not be detected by 

direct infusion. Similarly, Coy and coworkers [15] employed direct infusion with DMS to 

survey for biomarkers for radiation exposure in mouse urine. They noted the presence of N-

hexanoylglycine (m/z 172) and suberic acid (m/z 173) – two biomarkers whose isotopic 

envelopes convolved without DMS; these species separated cleanly with DMS. While use of 

MS/MS or MRM transitions may have made DMS unnecessary, they demonstrated that 

DMS with single-stage MS could have provided similar results.

Implementing DMS in an LC–MS bioanalytical assay can simplify sample preparation 

methods and enhance selectivity at the same time. Ray and coworkers [16] developed an 

LC–MRM panel for detecting five steroids, including two pairs of isomers: corticosterone 

and 11-deoxycortisol, 11-deoxycorticosterone and 17-hydroxyprogesterone, and 

progesterone. With DMS, the MRMs that were hampered by poor selectivity due to high 

levels of chemical noise now yielded unequivocal responses with desired limits of 

quantification. They also redesigned and simplified their sample preparation method, 

streamlining the assay for maximum efficiency and economy [16]. However, some steroid 

analyses require derivatization, [17] such the isomeric allopregnanolone and pregnanolone – 

important neurosteroids present at low levels in blood. While the derivatization increased 

ionization efficiency, it did not solve the problem that both isomers presented similar 

fragment ions at each other's LC retention times. However, when Jin and colleagues [17] 

integrated DMS into their LC–MRM method, they observed that derivatized 

allopregnanolone and pregnanolone had unique CoV values, thereby yielding clean MRM 

channels only at the correct retention times for each steroid.

Future outlook for DMS in bioanalytical workflows

As more bioanalytical workflows develop and the marketplace for these assays expands, 

DMS can provide streamlining for these workflows with unique and rapid separations where 

none are available. Beyond the small molecule and peptide-based assays we described here, 

there are also examples of DMS's benefits to lipidomics workflows, whether using a 

shotgun-style approach [18], an LC-based method [19] or more in-depth examinations of 

isomeric species [20].

Using DMS in more advanced bioanalytical work-flows will enable biologists to answer 

more complex questions about cellular processes. One such advancement is fluxomics 

[21,22] in which scientists monitor the rates of flux, the sources and the sinks of individual 

interacting molecules within a cellular pathway (e.g., metabolism). By adding stable isotope 

labeled analogs (isotopologs) of a known pathway interactor (e.g., citrate in Krebs cycle), 
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one can observe how quickly different sinks of the isotopologue incorporate stable isotopic 

labels themselves. DMS enhances fluxomics studies by its ability to separate small polar 

molecules (whose LC retention is often suboptimal) from high levels of chemical noise 

[21,22]. The overlap in this small molecule m/z space is considerable, and incorporating 

additional isotopes only exacerbates this problem. However, using DMS, isotopologues of a 

given molecule will have very similar CoV shifts – thereby separating the signals of these 

species from potential chemical interference [18].

A similar cellular pathway study by Israelsen and coworkers [23] demonstrated the use of 

DMS in understanding the role of pyruvate kinase M2 (PKM2) in the metabolism of glucose 

by breast cancer tumors in mouse models. By monitoring the levels of 13C-labeled lactate 

formed from in vivo metabolism of 13C-labeled glucose infused into the mice, they 

determined that PKM2-null tumors and PKM2-expressing tumors both exhibited similar 

levels of 13C-isotope incorporation in lactate – confirming that tumors produce lactate at 

rates independent of PKM2 [23]. Here, specific measurements of pyruvate and lactate in 

samples from plasma, tumors and normal tissues were all hampered by the difficulty 

fragmenting these ions. Given that pyruvate is two mass units below lactate, the 

incorporation of 13C label into pyruvate and other known and unknown ionic species in this 

m/z window potentially leads to a restrictively high degree of spectral overlap unique to each 

sample matrix. Again, DMS served to focus the lactate isotopologues within a narrow band 

of CoV values, preventing isobaric chemical noise from skewing the data and the underlying 

conclusions on these cells' glucose-to-lactate metabolism.

In subsequent studies involving more complex cellular pathways, DMS was employed to 

filter the isotopic signatures of labeled molecules, thereby revealing the specific roles of 

those molecules. Stark and coworkers [24] examined the role of mitochondrial 

phosphoenolpyruvate carboxykinase (PEPCK-M) on the basal turnover of gluconeogenic 

(glucose-forming) substrates by monitoring the flux of isotopologues of glucose, glycerol, 

lactate, glutamine, alanine; and urea. By monitoring the DMS-filtered MRMs of these 

species, they determined that, when PEPCK-M is silenced in vivo, glucose production 

remains stable despite a reduction in the turnover of lactate - the primary gluconeogenic 

precursor. Instead, glycerol turnover (not amino acids) took up the slack to provide 

gluconeogenic support to maintain euglycemia. In total, a more complete picture of the true 

role of PEPCK-M was obtained by monitoring the flux of many potentially contributing 

species than would have been if just glucose production were measured alone.

Conclusion

In the future, we will see many more examples of the utility of DMS in challenging assays 

(e.g., isomer identification, metabolic pathway analyses) and in cost- and time-reduction 

strategies for conventional workflows (e.g., offsetting exhaustive sample preparation, etc.). 

As the community of DMS users grows and the technology evolves, many exciting and 

unforeseen opportunities will undoubtedly be discovered.
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